If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16y^2+32y-16=0
a = 16; b = 32; c = -16;
Δ = b2-4ac
Δ = 322-4·16·(-16)
Δ = 2048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2048}=\sqrt{1024*2}=\sqrt{1024}*\sqrt{2}=32\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-32\sqrt{2}}{2*16}=\frac{-32-32\sqrt{2}}{32} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+32\sqrt{2}}{2*16}=\frac{-32+32\sqrt{2}}{32} $
| (2x+3)4(x+3)=90 | | 6p−3+2 | | 6i−3+2 | | 2x+3/4x-5=3/7 | | -9x-3=-48 | | 10t=-60 | | (3x+4)=°(6x-4)° | | 2.5x+1-7x=44 | | Y=10-3x. | | 3.7x=7.2-0.7x | | 5/6+9/10c=1/2 | | 13)8+3n=-n-2(n-1) | | -8+4u=-4u+4 | | R=2d+16 | | 27=2/7c+5 | | -124=-1-3(1-5n) | | 18x-7+7x+2=180 | | 25=0.15x+x | | 1+p=-19 | | a-17=-24 | | -141=-8(4n-3)-5 | | 17=s-(-9) | | -11r=66 | | 7x−3(x+6)=−2 | | 8×+12y=120 | | 56+m=433 | | x/4+16=26 | | |-4x-10|=0 | | -x=5-18 | | 4=80x | | p^2-2p+0.36=0 | | 18x+25=43 |